diff --git a/en/fpv-general.md b/en/fpv-general.md
index 0923238..c13c1b0 100644
--- a/en/fpv-general.md
+++ b/en/fpv-general.md
@@ -10,45 +10,45 @@
 
 * FEC_K and FEC_N
 
-        FEC_K and FEC_N are parameters used in Forward Error Correction (FEC) to define the structure and efficiency of error correction codes.
+    FEC_K and FEC_N are parameters used in Forward Error Correction (FEC) to define the structure and efficiency of error correction codes.
 
-        #### FEC_K
+    #### FEC_K
 
-        K refers to the number of information (or data) bits in a block before error correction encoding is applied.
-        This is the actual data that needs to be transmitted without any redundancy added for error correction.
+    K refers to the number of information (or data) bits in a block before error correction encoding is applied.
+    This is the actual data that needs to be transmitted without any redundancy added for error correction.
 
-        #### FEC_N
+    #### FEC_N
 
-        N refers to the total number of bits after error correction encoding has been applied.
+    N refers to the total number of bits after error correction encoding has been applied.
 
-        This includes both the original data bits (K) and the redundant bits that are added for error detection and correction.
-        Relationship Between FEC_K and FEC_N
+    This includes both the original data bits (K) and the redundant bits that are added for error detection and correction.
+    Relationship Between FEC_K and FEC_N
 
-        The difference between N and K represents the redundancy added by the error correction code. In other words, the redundant bits are used to detect and correct errors in the transmitted data.
+    The difference between N and K represents the redundancy added by the error correction code. In other words, the redundant bits are used to detect and correct errors in the transmitted data.
 
-        ```mathematica
-        N = K + Number of Redundant Bits
-        ```
+    ```mathematica
+    N = K + Number of Redundant Bits
+    ```
 
-        Example
+    Example
 
-        If FEC_K = 1000 and FEC_N = 1200, this means 200 redundant bits were added to the original 1000 data bits, creating a total of 1200 transmitted bits.
+    If FEC_K = 1000 and FEC_N = 1200, this means 200 redundant bits were added to the original 1000 data bits, creating a total of 1200 transmitted bits.
 
-        Code Rate
+    Code Rate
 
-        The ratio of information bits (K) to the total bits (N) is called the code rate:
+    The ratio of information bits (K) to the total bits (N) is called the code rate:
 
-        ```mathematica
-        Code Rate = K / N
-        ```
+    ```mathematica
+    Code Rate = K / N
+    ```
 
-        For example, if K = 1000 and N = 1200, the code rate would be:
+    For example, if K = 1000 and N = 1200, the code rate would be:
 
-        ```yaml
+    ```yaml
 
-        Code Rate = 1000 / 1200 = 0.833
-        ```
-        This means that 83.3% of the transmitted bits are actual data, and 16.7% are used for error correction.
+    Code Rate = 1000 / 1200 = 0.833
+    ```
+    This means that 83.3% of the transmitted bits are actual data, and 16.7% are used for error correction.
 
 
     #### Usage in Communication Systems