firmware/general/package/sigmastar-osdrv-ssc335/files/sample/test_venc.c

741 lines
18 KiB
C

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <poll.h>
#include <mi_sys.h>
#include <mi_sensor.h>
#include <mi_vif.h>
#include <mi_vpe.h>
#include <mi_venc.h>
#define GCI_SENSOR_PAD E_MI_VIF_SNRPAD_ID_0
#define GCI_PIXEL_FORMAT E_MI_SYS_PIXEL_FRAME_YUV_SEMIPLANAR_420
// #define GCI_VIF_WORK_MODE E_MI_VIF_WORK_MODE_RGB_FRAMEMODE
#define GCI_VIF_WORK_MODE E_MI_VIF_WORK_MODE_RGB_REALTIME
/// Initialize the MPI.
int32_t gci_sys_init(void) {
// make sure that we're starting with a clean table
MI_SYS_Exit();
return MI_SYS_Init();
}
/// Release the MPI resources.
int32_t gci_sys_exit(void) {
return MI_SYS_Exit();
}
/// Initialize the sensor.
int32_t gci_snr_init(uint8_t hdr, uint32_t resolution_id) {
MI_S32 ret;
MI_SNR_Disable(GCI_SENSOR_PAD);
if ((ret = MI_SNR_SetPlaneMode(GCI_SENSOR_PAD, hdr ? TRUE : FALSE)) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_SNR_SetRes(GCI_SENSOR_PAD, resolution_id)) != MI_SUCCESS) {
return ret;
}
return MI_SNR_Enable(GCI_SENSOR_PAD);
}
/// Deinitialize the sensor.
int32_t gci_snr_deinit(void) {
return MI_SNR_Disable(GCI_SENSOR_PAD);
}
/// Find the highest resolution offering at least a given FPS.
int32_t gci_snr_get_max_resolution(uint32_t fps, uint32_t* resolution_id) {
MI_U32 count, i, current_res, max_res, max_res_index, max_res_found;
MI_SNR_Res_t res;
MI_S32 ret;
if ((ret = MI_SNR_QueryResCount(GCI_SENSOR_PAD, &count)) != MI_SUCCESS) {
return ret;
}
max_res = 0;
max_res_found = 0;
for (i = 0; i < count; i++) {
if ((ret = MI_SNR_GetRes(GCI_SENSOR_PAD, i, &res)) != MI_SUCCESS) {
return ret;
}
current_res = res.stOutputSize.u16Width * res.stOutputSize.u16Height;
if (res.u32MaxFps < fps) {
continue;
} else if (max_res_found) {
if (current_res > max_res) {
max_res = current_res;
max_res_index = i;
}
} else {
max_res = current_res;
max_res_index = i;
max_res_found = 1;
}
}
if (max_res_found) {
*resolution_id = max_res_index;
}
return max_res_found ? MI_SUCCESS : MI_ERR_SNR_INVALID_PARA;
}
/// Get the maximum available FPS.
int32_t gci_snr_get_max_fps(uint32_t* fps) {
MI_U32 count, i, max_fps;
MI_SNR_Res_t res;
MI_S32 ret;
if ((ret = MI_SNR_QueryResCount(GCI_SENSOR_PAD, &count)) != MI_SUCCESS) {
return ret;
}
max_fps = 0;
for (i = 0; i < count; i++) {
if ((ret = MI_SNR_GetRes(GCI_SENSOR_PAD, i, &res)) != MI_SUCCESS) {
return ret;
}
if (res.u32MaxFps > max_fps) {
max_fps = res.u32MaxFps;
}
}
*fps = max_fps;
return MI_SUCCESS;
}
/// Get current FPS.
int32_t gci_snr_get_fps(uint32_t* fps) {
MI_SNR_Res_t res;
MI_U8 index;
MI_S32 ret;
if ((ret = MI_SNR_GetCurRes(GCI_SENSOR_PAD, &index, &res)) != MI_SUCCESS) {
return ret;
}
*fps = res.u32MaxFps;
return MI_SUCCESS;
}
/// Initialize the video input device.
///
/// The sensor must be already initialized at this point.
static int32_t gci_vif_init_dev(void) {
MI_SNR_PADInfo_t pad_info;
MI_VIF_DevAttr_t dev_attrs;
MI_S32 ret;
if ((ret = MI_SNR_GetPadInfo(GCI_SENSOR_PAD, &pad_info)) != MI_SUCCESS) {
return ret;
}
memset(&dev_attrs, 0, sizeof(dev_attrs));
dev_attrs.eIntfMode = pad_info.eIntfMode;
dev_attrs.eWorkMode = GCI_VIF_WORK_MODE;
dev_attrs.eHDRType = E_MI_VIF_HDR_TYPE_OFF;
if( dev_attrs.eIntfMode == E_MI_VIF_MODE_BT656) {
dev_attrs.eClkEdge = pad_info.unIntfAttr.stBt656Attr.eClkEdge;
} else {
dev_attrs.eClkEdge = E_MI_VIF_CLK_EDGE_DOUBLE;
}
if (dev_attrs.eIntfMode == E_MI_VIF_MODE_MIPI) {
dev_attrs.eDataSeq = pad_info.unIntfAttr.stMipiAttr.eDataYUVOrder;
} else {
dev_attrs.eDataSeq = E_MI_VIF_INPUT_DATA_YUYV;
}
if (dev_attrs.eIntfMode == E_MI_VIF_MODE_BT656) {
memcpy(
&dev_attrs.stSyncAttr,
&pad_info.unIntfAttr.stBt656Attr.stSyncAttr,
sizeof(MI_VIF_SyncAttr_t));
}
dev_attrs.eBitOrder = E_MI_VIF_BITORDER_NORMAL;
if ((ret = MI_VIF_SetDevAttr(0, &dev_attrs)) != MI_SUCCESS) {
return ret;
}
return MI_VIF_EnableDev(0);
}
/// Initialize the video input channel-port.
///
/// The video input device must be already initialized at this point.
static int32_t gci_vif_init_channel_port(void) {
MI_SNR_PADInfo_t pad_info;
MI_SNR_PlaneInfo_t plane_info;
MI_VIF_ChnPortAttr_t port_attrs;
MI_S32 ret;
if ((ret = MI_SNR_GetPadInfo(GCI_SENSOR_PAD, &pad_info)) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_SNR_GetPlaneInfo(GCI_SENSOR_PAD, 0, &plane_info)) != MI_SUCCESS) {
return ret;
}
memset(&port_attrs, 0, sizeof(port_attrs));
port_attrs.stCapRect.u16X = plane_info.stCapRect.u16X;
port_attrs.stCapRect.u16Y = plane_info.stCapRect.u16Y;
port_attrs.stCapRect.u16Width = plane_info.stCapRect.u16Width;
port_attrs.stCapRect.u16Height = plane_info.stCapRect.u16Height;
port_attrs.stDestSize.u16Width = plane_info.stCapRect.u16Width;
port_attrs.stDestSize.u16Height = plane_info.stCapRect.u16Height;
port_attrs.ePixFormat = (MI_SYS_PixelFormat_e)RGB_BAYER_PIXEL(
plane_info.ePixPrecision,
plane_info.eBayerId);
if (pad_info.eIntfMode == E_MI_VIF_MODE_BT656) {
port_attrs.eFrameRate = E_MI_VIF_FRAMERATE_FULL;
port_attrs.eCapSel = E_MI_SYS_FIELDTYPE_BOTH;
port_attrs.eScanMode = E_MI_SYS_FRAME_SCAN_MODE_PROGRESSIVE;
}
if ((ret = MI_VIF_SetChnPortAttr(0, 0, &port_attrs)) != MI_SUCCESS) {
return ret;
}
return MI_VIF_EnableChnPort(0, 0);
}
/// Initialize the video input.
int32_t gci_vif_init(void) {
MI_U32 resolution;
MI_U32 fps;
MI_S32 ret;
if ((ret = gci_snr_get_max_fps(&fps)) != MI_SUCCESS) {
return ret;
}
// cap the FPS to 30 for querying the max resolution
if (fps > 30) {
fps = 30;
}
if ((ret = gci_snr_get_max_resolution(fps, &resolution)) != MI_SUCCESS) {
return ret;
}
if ((ret = gci_snr_init(0, resolution)) != MI_SUCCESS) {
return ret;
}
MI_VIF_DisableDev(0);
if ((ret = gci_vif_init_dev()) != MI_SUCCESS) {
goto dev_init_err;
}
if ((ret = gci_vif_init_channel_port()) != MI_SUCCESS) {
goto channel_port_init_err;
}
return MI_SUCCESS;
channel_port_init_err:
MI_VIF_DisableDev(0);
dev_init_err:
gci_snr_deinit();
return ret;
}
/// Deinitialize the video input.
int32_t gci_vif_deinit(void) {
MI_S32 ret;
if ((ret = MI_VIF_DisableChnPort(0, 0)) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_VIF_DisableDev(0)) != MI_SUCCESS) {
return ret;
}
return gci_snr_deinit();
}
/// Get VPE channel attributes.
static int32_t gci_vpe_get_channel_attrs(MI_VPE_ChannelAttr_t* attrs) {
MI_VIF_DevAttr_t vif_dev_attrs;
MI_VIF_ChnPortAttr_t vif_port_attrs;
MI_S32 ret;
if ((ret = MI_VIF_GetDevAttr(0, &vif_dev_attrs)) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_VIF_GetChnPortAttr(0, 0, &vif_port_attrs)) != MI_SUCCESS) {
return ret;
}
memset(attrs, 0, sizeof(MI_VPE_ChannelAttr_t));
attrs->eRunningMode = vif_dev_attrs.eWorkMode == E_MI_VIF_WORK_MODE_RGB_REALTIME
? E_MI_VPE_RUN_REALTIME_MODE
: E_MI_VPE_RUN_CAM_MODE;
attrs->eHDRType = E_MI_VPE_HDR_TYPE_OFF;
attrs->ePixFmt = vif_port_attrs.ePixFormat;
attrs->u16MaxW = vif_port_attrs.stDestSize.u16Width;
attrs->u16MaxH = vif_port_attrs.stDestSize.u16Height;
attrs->bNrEn = FALSE;
attrs->bEsEn = FALSE;
attrs->bEdgeEn = FALSE;
attrs->bUvInvert = FALSE;
attrs->bContrastEn = FALSE;
attrs->eSensorBindId = E_MI_VPE_SENSOR0;
return MI_SUCCESS;
}
/// Get VPE port mode.
static int32_t gci_vpe_get_port_mode(MI_VPE_PortMode_t* mode) {
MI_VPE_ChannelAttr_t attrs;
MI_S32 ret;
if ((ret = MI_VPE_GetChannelAttr(0, &attrs)) != MI_SUCCESS) {
return ret;
}
memset(mode, 0, sizeof(MI_VPE_PortMode_t));
mode->u16Width = attrs.u16MaxW;
mode->u16Height = attrs.u16MaxH;
mode->ePixelFormat = GCI_PIXEL_FORMAT;
mode->eCompressMode = E_MI_SYS_COMPRESS_MODE_NONE;
return MI_SUCCESS;
}
/// Bind VPE and VIF.
static int32_t gci_vpe_bind_channel(void) {
MI_VIF_DevAttr_t vif_dev_attrs;
MI_SYS_ChnPort_t vif_output_port;
MI_SYS_ChnPort_t vpe_input_port;
MI_U32 frame_rate;
MI_S32 ret;
if ((ret = gci_snr_get_fps(&frame_rate)) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_VIF_GetDevAttr(0, &vif_dev_attrs)) != MI_SUCCESS) {
return ret;
}
memset(&vif_output_port, 0, sizeof(vif_output_port));
memset(&vpe_input_port, 0, sizeof(vpe_input_port));
vif_output_port.eModId = E_MI_MODULE_ID_VIF;
vif_output_port.u32DevId = 0;
vif_output_port.u32ChnId = 0;
vif_output_port.u32PortId = 0;
vpe_input_port.eModId = E_MI_MODULE_ID_VPE;
vpe_input_port.u32DevId = 0;
vpe_input_port.u32ChnId = 0;
vpe_input_port.u32PortId = 0;
return MI_SYS_BindChnPort2(
&vif_output_port,
&vpe_input_port,
frame_rate,
frame_rate,
vif_dev_attrs.eWorkMode == E_MI_VIF_WORK_MODE_RGB_REALTIME
? E_MI_SYS_BIND_TYPE_REALTIME
: E_MI_SYS_BIND_TYPE_FRAME_BASE,
0);
}
/// Unbind VPE and VIF.
static int32_t gci_vpe_unbind_channel(void) {
MI_SYS_ChnPort_t vif_output_port;
MI_SYS_ChnPort_t vpe_input_port;
memset(&vif_output_port, 0, sizeof(vif_output_port));
memset(&vpe_input_port, 0, sizeof(vpe_input_port));
vif_output_port.eModId = E_MI_MODULE_ID_VIF;
vif_output_port.u32DevId = 0;
vif_output_port.u32ChnId = 0;
vif_output_port.u32PortId = 0;
vpe_input_port.eModId = E_MI_MODULE_ID_VPE;
vpe_input_port.u32DevId = 0;
vpe_input_port.u32ChnId = 0;
vpe_input_port.u32PortId = 0;
return MI_SYS_UnBindChnPort(&vif_output_port, &vpe_input_port);
}
/// Initialize the Video Processing Engine.
int32_t gci_vpe_init(void) {
MI_VPE_ChannelAttr_t channel_attrs;
MI_VPE_PortMode_t port_mode;
MI_S32 ret;
if ((ret = gci_vpe_get_channel_attrs(&channel_attrs)) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_VPE_CreateChannel(0, &channel_attrs)) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_VPE_StartChannel(0)) != MI_SUCCESS) {
goto destroy_channel;
}
if ((ret = gci_vpe_bind_channel()) != MI_SUCCESS) {
goto stop_channel;
}
if ((ret = gci_vpe_get_port_mode(&port_mode)) != MI_SUCCESS) {
goto unbind_channel;
}
if ((ret = MI_VPE_SetPortMode(0, 0, &port_mode)) != MI_SUCCESS) {
goto unbind_channel;
}
if ((ret = MI_VPE_EnablePort(0, 0)) != MI_SUCCESS) {
goto unbind_channel;
}
return MI_SUCCESS;
unbind_channel:
gci_vpe_unbind_channel();
stop_channel:
MI_VPE_StopChannel(0);
destroy_channel:
MI_VPE_DestroyChannel(0);
return ret;
}
/// Deinitialize the Video Processing Engine.
int32_t gci_vpe_deinit(void) {
MI_S32 ret;
if ((ret = MI_VPE_DisablePort(0, 0)) != MI_SUCCESS) {
return ret;
}
if ((ret = gci_vpe_unbind_channel()) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_VPE_StopChannel(0)) != MI_SUCCESS) {
return ret;
}
return MI_VPE_DestroyChannel(0);
}
/// Create an MJPEG encoding channel.
static int32_t gci_venc_init_mjpeg(uint32_t dst_frame_rate) {
MI_VPE_ChannelAttr_t vpe_attrs;
MI_VENC_ChnAttr_t attrs;
MI_S32 ret;
if ((ret = MI_VPE_GetChannelAttr(0, &vpe_attrs)) != MI_SUCCESS) {
return ret;
}
memset(&attrs, 0, sizeof(attrs));
attrs.stVeAttr.eType = E_MI_VENC_MODTYPE_JPEGE;
attrs.stVeAttr.stAttrJpeg.u32MaxPicWidth = vpe_attrs.u16MaxW;
attrs.stVeAttr.stAttrJpeg.u32MaxPicHeight = vpe_attrs.u16MaxH;
attrs.stVeAttr.stAttrJpeg.u32PicWidth = vpe_attrs.u16MaxW;
attrs.stVeAttr.stAttrJpeg.u32PicHeight = vpe_attrs.u16MaxH;
attrs.stVeAttr.stAttrJpeg.bByFrame = TRUE;
attrs.stRcAttr.eRcMode = E_MI_VENC_RC_MODE_MJPEGCBR;
attrs.stRcAttr.stAttrMjpegCbr.u32SrcFrmRateNum = dst_frame_rate;
attrs.stRcAttr.stAttrMjpegCbr.u32SrcFrmRateDen = 1;
attrs.stRcAttr.stAttrMjpegCbr.u32BitRate = 4000000;
return MI_VENC_CreateChn(0, &attrs);
}
/// Bind a given VENC channel to the VPE.
static int32_t gci_venc_bind_channel(uint32_t dst_frame_rate) {
MI_SYS_ChnPort_t vpe_output_port;
MI_SYS_ChnPort_t venc_input_port;
MI_U32 src_frame_rate;
MI_U32 venc_dev;
MI_S32 ret;
if ((ret = gci_snr_get_fps(&src_frame_rate)) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_VENC_GetChnDevid(0, &venc_dev)) != MI_SUCCESS) {
return ret;
}
memset(&vpe_output_port, 0, sizeof(vpe_output_port));
memset(&venc_input_port, 0, sizeof(venc_input_port));
vpe_output_port.eModId = E_MI_MODULE_ID_VPE;
vpe_output_port.u32DevId = 0;
vpe_output_port.u32ChnId = 0;
vpe_output_port.u32PortId = 0;
venc_input_port.eModId = E_MI_MODULE_ID_VENC;
venc_input_port.u32DevId = venc_dev;
venc_input_port.u32ChnId = 0;
venc_input_port.u32PortId = 0;
return MI_SYS_BindChnPort2(
&vpe_output_port,
&venc_input_port,
src_frame_rate,
dst_frame_rate,
E_MI_SYS_BIND_TYPE_FRAME_BASE,
0);
}
/// Unbind a given VENC channel.
static int32_t gci_venc_unbind_channel() {
MI_SYS_ChnPort_t vpe_output_port;
MI_SYS_ChnPort_t venc_input_port;
MI_U32 venc_dev;
MI_S32 ret;
if ((ret = MI_VENC_GetChnDevid(0, &venc_dev)) != MI_SUCCESS) {
return ret;
}
memset(&vpe_output_port, 0, sizeof(vpe_output_port));
memset(&venc_input_port, 0, sizeof(venc_input_port));
vpe_output_port.eModId = E_MI_MODULE_ID_VPE;
vpe_output_port.u32DevId = 0;
vpe_output_port.u32ChnId = 0;
vpe_output_port.u32PortId = 0;
venc_input_port.eModId = E_MI_MODULE_ID_VENC;
venc_input_port.u32DevId = venc_dev;
venc_input_port.u32ChnId = 0;
venc_input_port.u32PortId = 0;
return MI_SYS_UnBindChnPort(&vpe_output_port, &venc_input_port);
}
/// Initialize an encoder channel and bind it to VPE.
int32_t gci_venc_init(uint32_t dst_frame_rate) {
MI_S32 ret;
if ((ret = gci_venc_init_mjpeg(dst_frame_rate)) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_VENC_StartRecvPic(0)) != MI_SUCCESS) {
goto destroy_channel;
}
if ((ret = gci_venc_bind_channel(dst_frame_rate)) != MI_SUCCESS) {
goto stop_channel;
}
return MI_SUCCESS;
stop_channel:
MI_VENC_StopRecvPic(0);
destroy_channel:
MI_VENC_DestroyChn(0);
return ret;
}
/// Deinitialize a given encoder channel.
int32_t gci_venc_deinit(void) {
MI_S32 ret;
if ((ret = gci_venc_unbind_channel()) != MI_SUCCESS) {
return ret;
}
if ((ret = MI_VENC_StopRecvPic(0)) != MI_SUCCESS) {
return ret;
}
return MI_VENC_DestroyChn(0);
}
static int32_t poll_fd(int32_t fd, int timeout) {
struct pollfd fds;
int ret;
fds.fd = fd;
fds.events = POLLIN;
ret = poll(&fds, 1, timeout);
if (ret == 0) {
return ETIMEDOUT;
} else if (ret < 0) {
return errno;
}
return 0;
}
static int32_t read_venc_frame(void) {
MI_VENC_ChnStat_t stat;
MI_VENC_Stream_t stream;
MI_VENC_Pack_t* packet;
MI_S32 ret;
MI_U32 i;
MI_S32 fd;
FILE* fout;
if ((fout = fopen("snapshot.jpg", "wb")) == NULL) {
printf(" unable to open output file\n");
}
fd = MI_VENC_GetFd(0);
printf(" waiting for a frame...\n");
ret = poll_fd(fd, 2000);
if (ret == ETIMEDOUT) {
printf(" no frame received in 2000ms\n");
return MI_SUCCESS;
} else if (ret != 0) {
printf(" poll error\n");
return MI_SUCCESS;
}
if ((ret = MI_VENC_Query(0, &stat)) != MI_SUCCESS) {
return ret;
}
if (stat.u32CurPacks == 0) {
return MI_SUCCESS;
}
memset(&stream, 0, sizeof(stream));
stream.u32PackCount = stat.u32CurPacks;
stream.pstPack = malloc(sizeof(MI_VENC_Pack_t) * stat.u32CurPacks);
if (!stream.pstPack) {
return MI_ERR_VENC_NOMEM;
}
if ((ret = MI_VENC_GetStream(0, &stream, 0)) != MI_SUCCESS) {
goto end;
}
if (stream.u32PackCount) {
printf(" frame #%u\n", stream.u32Seq);
printf(" frame pts: %llu\n", stream.pstPack[0].u64PTS);
printf(" packets: %u\n", stream.u32PackCount);
}
for (i = 0; i < stream.u32PackCount; i++) {
packet = &stream.pstPack[i];
printf(" packet #%u size: %u\n", i, packet->u32Len - packet->u32Offset);
fwrite(packet->pu8Addr + packet->u32Offset, 1, packet->u32Len - packet->u32Offset, fout);
}
ret = MI_VENC_ReleaseStream(0, &stream);
end:
free(stream.pstPack);
fclose(fout);
return ret;
}
int main(void) {
MI_S32 ret;
MI_U32 i;
printf("initializing...\n");
if ((ret = gci_sys_init()) != MI_SUCCESS) {
goto end;
}
printf(" ok\n");
printf("initializing video input...\n");
if ((ret = gci_vif_init()) != MI_SUCCESS) {
goto deinit_sys;
}
printf(" ok\n");
printf("initializing video processing engine...\n");
if ((ret = gci_vpe_init()) != MI_SUCCESS) {
goto deinit_vif;
}
printf(" ok\n");
printf("initializing video encoder...\n");
if ((ret = gci_venc_init(2)) != MI_SUCCESS) {
goto deinit_vpe;
}
printf(" ok\n");
// let's read a few frames to give AE and AWB some time to adjust to the
// scene
for (i = 0; i < 20; i++) {
printf("reading a frame...\n");
if ((ret = read_venc_frame()) != MI_SUCCESS) {
goto deinit_venc;
}
printf(" ok\n");
}
deinit_venc:
gci_venc_deinit();
deinit_vpe:
gci_vpe_deinit();
deinit_vif:
gci_vif_deinit();
deinit_sys:
gci_sys_exit();
end:
if (ret != MI_SUCCESS) {
printf(" error: %x\n", ret);
}
return ret == MI_SUCCESS ? 0 : 1;
}